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Abstract

Many geophysical quantities, like atmospheric temperature, water levels in rivers, and
wind speeds, have shown evidence of long-range dependence (LRD). LRD means that
these quantities experience non-trivial temporal memory, which potentially enhances
their predictability, but also hampers the detection of externally forced trends. Thus, it5

is important to reliably identify whether or not a system exhibits LRD. In this paper we
present a modern and systematic approach to the inference of LRD. Rather than Man-
delbrot’s fractional Gaussian noise, we use the more flexible Autoregressive Fractional
Integrated Moving Average (ARFIMA) model which is widely used in time series anal-
ysis, and of increasing interest in climate science. Unlike most previous work on the10

inference of LRD, which is frequentist in nature, we provide a systematic treatment of
Bayesian inference. In particular, we provide a new approximate likelihood for efficient
parameter inference, and show how nuisance parameters (e.g. short memory effects)
can be integrated over in order to focus on long memory parameters, and hypothesis
testing more directly. We illustrate our new methodology on the Nile water level data,15

with favorable comparison to the standard estimators.

1 Introduction

Many natural processes are sufficiently complex that a stochastic model is essential,
or at the very least an efficient description (Watkins, 2013). Such a process will be
specified by several properties, of which a particularly important one is the degree20

of memory in a time series, often expressed through a characteristic autocorrelation
time over which fluctuations will decay in magnitude. In this paper, however, we are
concerned with specific types of stochastic processes that are capable of possessing
“long memory”, or “long-range dependence” (LRD) (Beran, 1994a; Palma, 2007; Beran
et al., 2013). Long memory is the notion of there being correlation between the present25

and all points in the past. A standard definition is that a (finite variance, stationary)
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process has long memory if its autocorrelation function (ACF) has power-law decay:
ρ(·) such that ρ(k) ∼ cρ k

2d−1 as k→∞, for some non-zero constant cρ, and where
0 < d < 1

2 . The parameter d is the memory parameter; if d = 0 the process does not
exhibit long memory, while if −1

2 < d < 0 the process is said to be anti-persistent.
The asymptotic power law form of the ACF corresponds to an absence of a char-5

acteristic decay timescale, in striking contrast to many standard (stationary) stochastic
processes where the effect of each data point decays so fast that it rapidly becomes
indistinguishable from noise. An example of the latter is the exponential ACF where the
e-folding scale sets a characteristic correlation time. The study of processes that do
possess long memory is important because they exhibit unusual properties, because10

many familiar mathematical results fail to hold, and because of the numerous examples
of data sets where LRD is seen.

The study of long memory originated in the 1950s in the field of hydrology, where
studies of the levels of the river Nile (Hurst, 1951) demonstrated anomalously fast
growth of the rescaled range of the time series. After protracted debates1 about15

whether this was a transient (finite time) effect, the mathematical pioneer Benoît
B. Mandelbrot showed that if one retained the assumption of stationarity, novel math-
ematics would then be essential to sufficiently explain the Hurst effect. In doing so
he rigorously defined the concept of long memory (Mandelbrot and Van Ness, 1968;
Mandelbrot and Wallis, 1968).20

Most research into long memory and its properties has been based on classical sta-
tistical methods, spanning parametric, semi-parametric and non-parametric modeling
(see Beran et al., 2013, for a review). Very few Bayesian methods have been studied,
most probably due to computational difficulties. The earliest works are parametric and
include Koop et al. (1997), Pai and Ravishanker (1998), and Hsu and Breidt (2003). If25

computational challenges could be mitigated, the Bayesian paradigm would offer ad-
vantages over classical methods including flexibility in specification of priors (i.e. phys-

1For a detailed exposition of this period of mathematical history, see Graves et al. (2014).
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ical expertise could be used to elicit an informative prior). It would offer the ability to
marginalize out aspects of a model apparatus and data, such as short memory or sea-
sonal effects and missing observations, so that statements about long memory effects
can be made unconditionally.

Towards easing the computational burden, we focus on the ARFIMA class of pro-5

cesses (Granger and Joyeux, 1980; Hosking, 1981) as the basis of developing a sys-
tematic and unifying Bayesian framework for modeling a variety of common time se-
ries phenomena, with particular emphasis on detecting potential long memory effects.
ARFIMA has become very popular in statistics and econometrics because it is gen-
eralizable and its connection to the ARMA family (and to fractional Gaussian noise)10

is relatively transparent. A key property of ARFIMA is its ability to simultaneously yet
separately model long and short memory.

Both Liseo et al. (2001) and Holan et al. (2009) argued, echoing a sentiment in the
classical statistics literature, that full parametric long memory models (like ARFIMA)
are “too hard” to work with. Furthermore, often d is the only object of real interest,15

and consideration of a single class of models, such as ARFIMA, is too restrictive. They
therefore developed methods which have similarities to classical periodograms.

We think ARFIMA deserves another look – that many of the above drawbacks, to
ARFIMA in particular and Bayesian computation more generally, can be addressed with
a careful treatment. We provide a new approximate likelihood for ARFIMA processes20

that can be computed quickly for repeated evaluation on large time series, and which
underpins an efficient MCMC scheme for Bayesian inference. Our sampling scheme
can be best described as a modernization of a blocked MCMC scheme proposed by
Pai and Ravishanker (1998) – adapting it to the approximate likelihood and extending
it to handle a richer form of (known) short memory effects. We then further extend25

the analysis to the case where the short memory form is unknown, which requires
transdimensional MCMC. This aspect is similar to the work of Ehlers and Brooks (2008)
who considered the simpler ARIMA model class, and to Holan et al. (2009) who worked
with a nonparametric long memory process. Our contribution has aspects in common
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with Eğrioğlu and Günay (2010) who presented a more limited method focused on
model selection rather than averaging. The advantage of averaging is that the unknown
form of short memory effects can be integrated out, focusing on long-memory without
conditioning on nuisance parameters.

The aim of this paper is to introduce an efficient Bayesian algorithm for the infer-5

ence of the parameters of the ARFIMA(p,d ,q) model, with particular emphasis on the
LRD parameter d . Our Bayesian inference algorithm has been designed in a flexible
fashion so that, for instance, the innovations can come from a wide class of different
distributions; e.g. α-stable or t distribution (to be published in a companion paper). The
remainder of the paper is organized as follows. Section 2 summarizes the ARFIMA10

model required for our purposes. Section 3 discusses the important numerical calcula-
tion of likelihoods, representing a hybrid between earlier classical statistical methods,
and our new contributions towards a full Bayesian approach. Section 4 describes our
proposed Bayesian framework and methodology in detail, focusing on long-memory
only. Then, in Sect. 5, we consider extensions for additional short memory. Empirical15

illustration and comparison of all methods is provided in Sect. 6. The paper concludes
with a discussion in Sect. 7 focused on the potential for further extension.

2 Time series definitions and the ARFIMA model

Because ARFIMA models have not yet been very widely used in the geosciences we
provide here a brief review of them. Readers familiar with ARFIMA models can skip20

this section.
We define an autocovariance ACV γ(·) of a weakly stationary process as γ(k) =

Cov(Xt,Xt+k), where k is referred to as the (time) “lag”. The (normalized) autocor-
relation function ACF ρ(·) is defined as: ρ(k) = γ(k)

γ(0) . Another useful time domain tool
is the “backshift” operator B, where BXt = Xt−1, and powers of B are defined itera-25

tively: BkXt = B
k−1(BXt) = B

k−1Xt−1 = · · · = Xt−k . A stationary process {Xt} is said to
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be causal if there exists a sequence of coefficients {ψk}, with finite total mean square∑∞
k=0ψ

2
k <∞ such that for all t, a given member of the process can be expanded as

a power series in the backshift operator acting on the “innovations”, {εt}:

Xt =Ψ(B)εt, where Ψ(z) =
∞∑
k=0

ψkz
k . (1)

The innovations are a white (i.e. stationary, zero mean, iid) noise process with variance5

σ2. Causality specifies that for every t, Xt can only depend on the past and present
values of the innovations {εt}.

A process {Xt} is said to be an auto-regressive process of order p, AR(p), if for all t:

Φ(B)Xt = εt, where Φ(z) = 1+
p∑
k=1

φkz
k , and (φ1, . . .,φp) ∈Rp. (2)

AR(p) processes are invertible, stationary and causal if and only if Φ(z) 6= 0 for all z ∈C10

such that |z| ≤ 1. {Xt} is said to be a moving average process of order q, MA(q), if

Xt =Θ(B)εt, where Θ(z) = 1+
q∑
k=1

θkz
k , and (θ1, . . .,θp) ∈Rq, (3)

for all t.2 MA(q) processes are stationary and causal, and are invertible if and only if
Θ(z) 6= 0 for all z ∈C such that |z| ≤ 1.

A natural extension of the AR and MA classes arises by combining them (Box and15

Jenkins, 1970). The process {Xt} is said to be an auto-regressive moving average
(ARMA) process process of orders p and q, ARMA(p,q), if for all t:

Φ(B)Xt =Θ(B)εt. (4)

2Many authors define Φ(z) = 1−
∑
φkz

k . Our version emphasises connections between Φ
and Eqs. (2) and (3).
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Although there is no simple closed form for the ACV of an ARMA process with arbitrary
p and q, so long as the process is causal and invertible, then |ρ(k)| ≤ Crk , for k > 0,
i.e. it decays exponentially fast. In other words, although correlation between nearby
points may be high, dependence between distant points is negligible.

Before turning to “long memory”, we require one further result. Under some extra5

conditions, stationary processes with ACV γ(·) possess a spectral density function
(SDF) f (·) defined such that: γ(k) =

∫π
−πe

ikλf (λ)dλ, ∀k ∈ Z. This can be inverted to ob-
tain an explicit expression for the SDF (e.g. Brockwell and Davis, 1991, Sect. 4.3):
f (λ) = 1

2π

∑∞
k=−∞γ(k)e−ikλ, where −π ≤ λ ≤ π.3 Finally, the SDF of an ARMA process is

f (λ) =
σ2

2π
|Θ(e−iλ)|2

|Φ(e−iλ)|2
, 0 ≤ λ ≤ π. (5)10

The restriction |d | < 1
2 is necessary to ensure stationarity; clearly if |d | ≥ 1

2 the ACF
would not decay. The continuity between stationary and non-stationary processes
around |d | = 1

2 is similar to that which occurs for AR(1) process with |φ1| → 1 (such pro-
cesses are stationary for |φ1| < 1, but the case |φ1| = 1 is the non-stationary random-
walk).15

There are a number of alternative definitions of LRD, one of which is particularly
useful, as it considers the frequency domain: A stationary process has long memory
when its SDF follows f (λ) ∼ cf λ

−2d , as λ→ 0+ for some positive constant cf , and where
0 < d < 1

2 .
The simplest way of creating a process which exhibits long memory is through the20

SDF. Consider f (λ) = |1−eiλ|−2d , where 0 < |d | < 1
2 . By simple algebraic manipulation,

this is equivalently f (λ) =
(
2sin λ

2

)−2d
, from which we deduce that f (λ) ∼ λ−2d as λ→

0+. Therefore, assuming stationarity, the process which has this SDF (or any scalar

3Since ACV of a stationary process is an even function of lag, the above equation implies
that the associated SDF is an even function. One therefore only needs to be interested positive
arguments: 0 ≤ λ ≤ π.
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multiple of it) is a long memory process. More generally, a process having spectral
density

f (λ) =
σ2

2π

∣∣1−eiλ∣∣−2d
, 0 < λ ≤ π (6)

is called fractionally integrated with memory parameter d , FI(d ) (Barnes and Allan,
1966; Adenstedt, 1974). The full trichotomy of negative, short, and long memory is5

determined solely by d .
In practice this model is of limited appeal to time series analysts because the

entire memory structure is determined by just one parameter, d . One often there-
fore generalizes it by taking any short memory SDF f ∗(·), and defining a new SDF:

f (λ) = f ∗(λ)
∣∣∣1−eiλ∣∣∣−2d

, 0 ≤ λ ≤ π. An obvious class of short memory processes to10

use this way is ARMA. Taking f ∗ from Eq. (5) yields so-called auto-regressive frac-
tionally integrated moving average process with parameter d , and orders p and q
(ARFIMA(p,d ,q)), having SDF:

f (λ) =
σ2

2π
|Θ(e−iλ)|2

|Φ(e−iλ)|2
|1−eiλ|−2d , 0 ≤ λ ≤ π. (7)

Choosing p = q = 0 recovers FI(d ) ≡ ARFIMA(0,d ,0)15

Practical utility from the perspective of (Bayesian) inference demands finding a repre-
sentation in the temporal domain. To obtain this, consider the operator (1−B)d for real
d > −1, which is formally defined using the generalized form of the binomial expansion
(Brockwell and Davis, 1991, Eq. 13.2.2):

(1−B)d =:
∞∑
k=0

π(d )
k B

k , where π(d )
k = (−1)k

1
Γ(k +1)

Γ(d +1)

Γ(d −k +1)
. (8)20

From this observation, one can show that Xt = (1−B)−dZt, where {Zt} is an ARMA
process, has SDF shown in Eq. (7). The operator (1−B)d is called the “fractional dif-
ferencing” operator since it allows a degree of differencing between zeroth and first
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order. The process {Xt} is fractionally “inverse-differenced”, i.e. it is an “integrated”
process. The operator is used to redefine both the ARFIMA(0,d ,0) and more general
ARFIMA(p,d ,q) processes in the time domain. A process {Xt} is an ARFIMA(0,d ,0)
process if for all t: (1−B)dXt = εt. Likewise, a process {Xt} is an ARFIMA(p,d ,q) pro-
cess if for all t: Φ(B)(1−B)dXt =Θ(B)εt, where Φ and Θ are given in Eqs. (2) and (3)5

respectively.
Finally, to connect back to our first definition of long memory, consider the ACV of the

ARFIMA(0,d ,0) process. By using the definition of spectral density to directly integrate
f (λ) in Eq. (6), and an alternative expression for π(d )

k in Eq. (8)

π(d )
k =

1
Γ(k +1)

Γ(k −d )

Γ(−d )
, (9)10

one can obtain the following representation of the ACV of the ARFIMA(0,d ,0) process:

γd (k;σ) = σ2 Γ(1−2d )

Γ(1−d )Γ(d )

Γ(k +d )

Γ(1+k −d )
. (10)

Because the parameter σ2 is just a scalar multiplier, we may simplify notation by defin-
ing γd (k) = γd (k;σ)/σ2, whereby γd (·) ≡ γd (·;1). Then the ACF is:

ρd (k) =
Γ(1−d )

Γ(d )

Γ(k +d )

Γ(1+k −d )
, (11)15

from which Stirling’s approximation gives ρd (k) ∼ Γ(1−d )
Γ(d ) k

2d−1, confirming a power-
law relationship for the ACF. Finally, note that Eq. (9) can be used to represent
ARFIMA(0,d ,0) as an AR(∞) process, as Xt +

∑∞
k=1π

(d )
k Xt−k = εt. And noting that

ψ (d )
k = π(−d )

k , leads to the following MA(∞) analog: Xt =
∑∞
k=0

1
Γ(k+1)

Γ(k+d )
Γ(d ) εt−k .
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3 Likelihood evaluation for Bayesian inference

For now we restrict our attention to (a Bayesian) analysis of an ARFIMA(0,d ,0) pro-
cess, having no short-ranged ARMA components, placing emphasis squarely on the
memory parameter d .

Here we develop an efficient and new scheme for evaluating the (log) likelihood,5

via approximation. This scheme is very flexible in the sense that it seamlessly allows
to use different noise distributions (like a t distribution instead of a Gaussian; this
will be reported elsewhere). Throughout, suppose that we have observed the vector
x = (x1, . . .,xn)

> as a realization of a stationary, causal and invertible ARFIMA(0,d ,0)
process {Xt} with mean µ ∈R. The innovations will be assumed to be independent,10

and taken from a zero-mean location-scale probability density f (·;0,σ,λ), which means
the density can be written as f (x;δ,σ,λ) ≡ 1

σ f
(x−δ

σ ;0,1,λ
)
. The parameters δ and σ

are called the “location” and “scale” parameters respectively. The m dimensional λ
is a “shape” parameter (if it exists, i.e. m> 0). An common example is the Gaussian
N (µ,σ2), where δ ≡ µ and there is λ. We classify the four parameters µ, σ, λ, and d ,15

into three distinct classes: (1) the mean of process, µ; (2) innovation distribution pa-
rameters, υ = (σ,λ); and (3) memory structure, d . Together, ψ = (µ,υ,ω), whereω will
later encompass the short-range parameters p and q.

Our proposed likelihood approximation uses a truncated AR(∞) approximation
(cf. Haslett and Raftery, 1989). We first re-write the AR(∞) approximation of20

ARFIMA(0,d ,0) to incorporate the unknown parameter µ, and drop the (d ) superscript
for convenience: Xt −µ = εt −

∑∞
k=1πk(Xt−k −µ). Then we truncate this AR(∞) repre-

sentation to obtain an AR(P ) one, with P large enough to retain low frequency effects,
e.g. P = n.

We denote: ΠP =
∑P
k=0πk and, with π0 = 1, rearrange terms to obtain the following25

modified model:

Xt = εt +ΠPµ−
P∑
k=1

πkXt−k . (12)
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It is now possible to write down a conditional likelihood. For convenience the no-
tation xk = (x1, . . .,xk)> for k = 1, . . .,n will be used (and x0 is interpreted as ap-
propriate where necessary). Denote the unobserved P vector of random variables
(x1−P , . . .,x−1,x0)> by xA (in the Bayesian context these will be “auxiliary”, hence “A”).
Consider the likelihood L(x|ψ ) as a joint density which can be factorized as a prod-5

uct of conditionals. Writing gt(xt |xt−1,ψ ) for the density of Xt conditional on xt−1, we
obtain L(x|ψ ) =

∏n
t=1gt(xt |xt−1,ψ ).

This is still of little use because the gt may have a complicated form. However by
further conditioning on xA, and writing ht(xt |xA,xt−1,ψ ) for the density of Xt con-
ditional on xt−1 and xA, we obtain: L(x|ψ ,xA) =

∏n
t=1ht(xt |xA,xt−1,ψ ). Returning to10

Eq. (12) observe that, conditional on both the observed and unobserved past values,
Xt is simply distributed according to the innovations’ density f with a suitable change in

location: Xt |xt−1,xA ∼ f
(
·;
[
ΠPµ−

∑P
k=1πkxt−k

]
,σ,λ

)
. Then using location-scale rep-

resentation:

ht(xt |xA,xt−1,ψ ) ≈ f
(
xt;

[
ΠPµ−

P∑
k=1

πkxt−k

]
,σ,λ

)
(13)15

≡ 1
σ
f
(
ct −ΠPµ

σ
;0,1,λ

)
, where ct =

P∑
k=0

πkxt−k , t = 1, . . .,n.

Therefore, L(x|ψ ,xA) ≈ σ−n
∏n
t=1f
(
ct−ΠP µ

σ ;λ
)

, or equivalently:

`(x|ψ ,xA) ≈ −n logσ +
n∑
t=1

log
{
f
(
ct −ΠPµ

σ
;λ
)}

. (14)

Evaluating this expression efficiently depends upon efficient calculation of c =
(c1, . . .,cn)

t and log f (·). From Eq. (13), c is a convolution of the augmented data,20

(x,xA), and coefficients depending on d , which can be evaluated quickly in R via
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convolve via FFT. Consequently, evaluation of the conditional likelihood in the Gaus-
sian case costs only O(n logn) – a clear improvement over the “exact” method. Obtain-
ing the unconditional likelihood requires marginalization over xA, which is analytically
infeasible. However this conditional form will suffice in the context of our Bayesian in-
ferential scheme, presented below.5

4 A Bayesian approach to long memory inference

We are now ready to consider Bayesian inference for ARFIMA(0,d ,0) processes. Our
method can be succinctly described as a modernization of the blocked MCMC method
of Pai and Ravishanker (1998). Isolating parameters by blocking provides significant
scope for modularization which helps accommodate our extensions for short memory.10

Pairing with efficient likelihood evaluations allows much longer time series to be enter-
tained than ever before. Our description begins with appropriate specification of priors
which are more general than previous choices, yet still encourages tractable inference.
We then provide the relevant updating calculations for all parameters, including those
for auxiliary parameters xA.15

We follow earlier work (Koop et al., 1997; Pai and Ravishanker, 1998) and assume
a priori independence for components of ψ . Each component will leverage familiar prior
forms with diffuse versions as limiting cases. Specifically, we use a diffuse Gaussian
prior on µ: µ ∼N (µ0,σ2

0 ), with σ0 large. The improper flat prior is obtained as the
limiting distribution when σ0→∞: pµ(µ) ∝ 1. We place a gamma prior on the precision20

τ = σ−2 implying a Root-Inverse Gamma distributionR(α0,β0) for σ, with density f (σ) =
2

Γ(α)β0
α0σ−(2α0+1) exp

(
−β0

y2

)
, σ > 0. A diffuse/improper prior is obtained as the limiting

distribution when α0,β0→ 0: pσ(σ) ∝ σ−1. Finally, we specify d ∼ U
(
−1

2 , 1
2

)
.

Updating µ: following Pai and Ravishanker (1998), we use a symmetric random walk
(RW) MH update with proposals ξµ ∼N (µ,σ2

µ), for some σ2
µ. The acceptance ratio is25
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Aµ(µ,ξµ) =
n∑
t=1

log

{
f

(
ct −ΠP ξµ

σ
;λ

)}
−

n∑
t=1

log
{
f
(
ct −ΠPµ

σ
;λ
)}

+ log

[
pµ(ξµ)

pµ(µ)

]
(15)

under the approximate likelihood.
Updating σ : we diverge from Pai and Ravishanker (1998) here, who suggest in-

dependent MH with moment-matched inverse gamma proposals, finding poor per-5

formance under poor moment estimates. We instead prefer a Random Walk (RW)
Metropolis-Hastings (MH) approach, which we conduct in log space since the domain
is R+. Specifically, set: logξσ = logσ +υ, where υ ∼N (0,σ2

σ) for some σ2
σ . ξσ |σ is log-

normal and we obtain: q(σ;ξσ )
q(ξσ ;σ) =

ξσ
σ . Recalling Eq. (15) the MH acceptance ratio under

the approximate likelihood is10

Aσ(σ,ξσ) =
n∑
t=1

log
{
f
(
ct −ΠPµ

ξσ
;λ
)}
−

n∑
t=1

log
{
f
(
ct −ΠPµ

σ
;λ
)}

+ log
[
pσ(ξσ)

pσ(σ)

]
+ (n−1) log

[
σ
ξσ

]
.

The MH algorithm, applied alternately in a Metropolis-within-Gibbs fashion to the pa-
rameters µ and σ, works well. However actual Gibbs sampling is an efficient alternative
in this two-parameter case (i.e. for known d , see Graves, 2013).15

Update of d : updating the memory parameter d is far less straightforward than
either µ or σ. Regardless of the innovations’ distribution, the conditional posterior
πd |ψ−d (d |ψ −d ,x) is not amenable to Gibbs sampling. We use RW proposals from trun-

cated Gaussian ξd ∼N
(a,b)(µ,σ2), with density

f (x;µ,σ,a,b) =
1
σ

φ[(x−µ)/σ]

Φ[(b−µ)/σ]−Φ[(a−µ)/σ]
, a < x < b. (16)20
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In particular, we use ξd |d ∼N
(−1/2,1/2)(d ,σ2

d ) via rejection sampling fromN (d ,σ2
d ) until

ξd ∈
(
−1

2 , 1
2

)
. Although this may seem inefficient, it is perfectly acceptable: as an exam-

ple, if σd = 0.5 the expected number of required variates is still less than 2, regardless
of d . More refined methods of directly sampling from truncated normal distributions
exist – see for example Robert (1995) – but we find little added benefit in our context.5

A useful cancellation in q(d ;ξd )/q(ξd ;d ) obtained from Eq. (16) yields

Ad =`(x|ξd ,ψ −d )− `(x|d ,ψ −d )+ log
[
pd (ξd )

pd (d )

]
+ log

{
Φ
[(1

2 −d
)
/σd
]
−Φ

[(
−1

2 −d
)
/σd
]

Φ
[(1

2 − ξd
)
/σd
]
−Φ

[(
−1

2 − ξd
)
/σd
]} .

Denote ξct =
∑P
k=0ξπkxt−k for t = 1, . . .,n, where {ξπk } are the proposed coefficients

{π(ξd )
k };π

(d )
k = 1

Γ(k+1)
Γ(k−d )
Γ(−d ) . Denote ξΠP =

∑P
k=0ξπk . Then in the approximate case:10

Ad =
n∑
t=1

log

{
f

(
ξct − ξΠP µ

σ
;λ

)}
−

n∑
t=1

log
{
f
(
ct −ΠPµ

σ
;λ
)}

+ log
[
pd (ξd )

pd (d )

]
+ log

{
Φ
[(1

2 −d
)
/σd
]
−Φ

[(
−1

2 −d
)
/σd
]

Φ
[(1

2 − ξd
)
/σd
]
−Φ

[(
−1

2 − ξd
)
/σd
]} . (17)

Optional update of xA: when using the approximate likelihood method, one must
account for the auxiliary variables xA, a P vector (where P = n is sensible). We find that,
in practice, it is not necessary to update all the auxiliary parameters at each iteration.15

In fact the method can be shown to work perfectly well, empirically, if we never update
them, provided they are given a sensible initial value (such as the sample mean of the
observed data x̄). This is not an uncommon tactic in the long memory (big-n) context
(e.g. Beran, 1994b); for further discussion refer to Graves (2013, Appendix C).
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For a full MH approach, we recommend an independence sampler to “backward
project” the observed time series. Specifically, first relabel the observed data: y−i =
xi+1, i = 0, . . .,n−1. Then use the vector (y−(n−1), . . .,y−1,y0)t to generate a new vector

of length n, (Y1, . . .,Yn)
t where Yt via Eq. (12): Yt = εt +ΠPµ−

∑n
k=1πkYt−k , where the

coefficients {π} are determined by the current value of the memory parameter(s). Then5

take the proposed xA, denoted ξxA
, as the reverse sequence: ξx−i = yi+1, i = 0, . . .,n−1.

Since this is an independence sampler, calculation of the acceptance probability is
straightforward. It is only necessary to evaluate the proposal density q(ξxA

|x,ψ ). But
this is easy using the results from Sect. 3. For simplicity, we prefer uniform prior for xA.

Besides simplicity, justification for this approach lies primarily in is preservation of the10

auto-correlation structure – this is clear since the ACF is symmetric in time. The pro-
posed vector has a low acceptance rate, and the potential remedies (e.g. multiple-try
methods) seem unnecessarily complicated given the success of the simpler method.

5 Extensions to accommodate short memory

Simple ARFIMA(0,d ,0) are mathematically convenient but have limited practical ap-15

plicability because the entire memory structure is determined by just one parameter,
d . Although d is often of primary interest, it may be unrealistic to assume no short
memory effects. This issue is often implicitly acknowledged since semi-parametric es-
timation methods, such as those used as comparators in Sect. 6.1, are motivated by
a desire to circumvent the problem of specifying precisely (and inferring) the form of20

short memory (i.e. the values of p and q in an ARIMA model). Full parametric Bayesian
modeling of ARFIMA(p,d ,q) processes represents an essentially untried alternative,
primarily due to computational challenges. Related, more discrete, alternatives show
potential. Pai and Ravishanker (1998) considered all four models with p,q ≤ 1, whereas
Koop et al. (1997) considered sixteen with p,q ≤ 3.25

Such approaches, especially ones allowing larger p,q, can be computationally bur-
densome as much effort is spent modeling unsuitable processes towards a goal (in-
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ferring p,q) which is not of primary interest (d is). To develop an efficient, fully-
parametric, Bayesian method of inference that properly accounts for varying models,
and to marginalize out these nuisance quantities, we use reversible-jump (RJ) MCMC
(Green, 1995). We extend the parameter space to include the set of models (p and q),
with chains moving between and within models, and focus on the marginal posterior5

distribution of d obtained by (Monte Carlo) integration over all models and parame-
ters therein. RJ methods have previously been applied to both auto-regressive models
(Vermaak et al., 2004), and full ARMA models (Ehlers and Brooks, 2006, 2008). In the
long memory context, Holan et al. (2009) applied RJ to FEXP processes. However for
ARFIMA, the only related work we are aware of is by Eğrioğlu and Günay (2010) who10

demonstrated a promising if limited alternative.
Below we show how the likelihood may be calculated with extra short-memory com-

ponents when p and q are known, and subsequently how Bayesian inference can be
applied in this case. Then, the more general case of unknown p and q via RJ is de-
scribed.15

5.1 Likelihood derivation and inference for known short memory

Recall that short memory components of an ARFIMA process are defined by the AR
and MA polynomials, Φ and Θ respectively, (see Sect. 2). Here, we distinguish be-
tween the polynomial, Φ, and the vector of its coefficients, φ = (φ1, . . .,φp). When the

polynomial degree is required explicitly, bracketed superscripts will be used; Φ(p),φ(p),20

Θ(p), θ (p), respectively.
We combine the short memory parameters φ and θ with d to create a single “mem-

ory” parameter, ω = (φ,θ ,d ). For a given unit-variance ARFIMA(p,d ,q) process, we
denote its ACV by γω(·), with γd (·) and γφ,θ (·) those of the relevant unit-variance
ARFIMA(0,d ,0) and ARMA(p,q) processes respectively. The SDF of the unit-variance25

ARFIMA(p,d ,q) process is written as fω(·), and its covariance matrix is Σω.
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An “exact” likelihood evaluation requires an explicit calculation of the ACV γω(·), how-
ever there is no simple closed form for arbitrary ARFIMA processes. Fortunately, our
proposed approximate likelihood method of Sect. 3 can be ported over directly. Given
the coefficients {π(d )

k } and polynomials Φ and Θ, it is trivial to calculate the {π(ω)
k } co-

efficients required by again applying the numerical methods of Brockwell and Davis5

(1991, Sect. 3.3).
To focus the exposition, consider the simple, yet useful, ARFIMA(1,d ,0) model where

the full memory parameter is ω = (d ,φ1). Because the parameter spaces of d and φ1
are independent, it is simplest to update each of these parameters separately; d with
the methods of Sect. 4 and φ1 similarly: ξφ1

|φ1 ∼N
(−1,1)(φ1,σ2

φ1
), for some σ2

φ1
. In10

practice however, the posteriors of d and φ1 typically exhibit significant correlation so
independent proposals are inefficient. One solution would be to parametrize to some
d ∗ and orthogonal φ∗2, but the interpretation of d ∗ would not be clear. An alternative
to explicit reparametrisation is to update the parameters jointly, but in such a way that
proposals are aligned with the correlation structure. This will ensure a reasonable ac-15

ceptance rate and mixing.
To propose parameters in the manner described above, a two-dimensional, suitably

truncated Gaussian random walk, with covariance matrix aligned with the posterior co-
variance, is required. To make proposals of this sort, and indeed for arbitraryω in larger
p and q cases, requires sampling from a hypercuboid-truncated MVN N (a,b)

r (ω,Σω),20

where (a,b) describe the coordinates of the hypercube. We find that rejection sampling
based unconstrained similarly parameterized MVNs samples (e.g. using mvtnorm,
Genz et al., 2012) works well, because in the RW setup the mode of the distribu-
tion always lies inside the hypercuboid. Returning to the specific ARFIMA(1,d ,0) case,
clearly r = 2, b = (0.5,1) and a = −b, is appropriate. Calculation of the MH acceptance25

ratio Aω(ω,ξω) is trivial; it simply requires numerical evaluation of Φr (·; ·,Σω), e.g. via
mvtnorm, since the ratios of hypercuboid normalization terms would cancel. We find
that initial φ[0] chosen uniformly in C1, i.e. the interval (−1,1), and d [0] are systemat-
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ically from {−0.4,−0.2,0,0.2,0.4} work well. Any choice of prior for ω can be made,
although we prefer flat (proper) priors.

The only technical difficulty is the choice of proposal covariance matrix Σω. Ideally,
it would be aligned with the posterior covariance – however this is not a priori known.
We find that running a “pilot” chain with independent proposals via N (a,b)

r (ω,σ2
ωIr ) can5

help choose a Σω. A rescaled version of the sample covariance matrix from the pilot
posterior chain, following Roberts and Rosenthal (2001), works well (see Sect. 6.2).

5.2 Unknown short memory form

We now expand the parameter space to include models M ∈M, the set of ARFIMA
models with p and q short memory parameters, indexing the size of the parameter10

space Ψ(M). For our “transdimensional moves”, we only consider adjacent models, on
which we will be more specific later. For now, note that the choice of bijective function
mapping between models spaces (whose Jacobian term appears in the acceptance
ratio), is crucial to the success of the sampler. To illustrate, consider transforming from
Φ(p+1) ∈ Cp+1 down to Φ(p) ∈ Cp. This turns out to be a non-trivial problem however15

because, for p > 1, Cp has a very complicated shape. The most natural map would be:
(φ1, . . .,φp,φp+1) 7−→ (φ1, . . .,φp). However there is no guarantee that the image will
lie in Cp. Even if the model dimension is fixed, difficulties are still encountered; a natural
proposal method would be to update each component of φ separately but, because of
the awkward shape of Cp, the “allowable” values for each component are a complicated20

function of the others. Nontrivial proposals are required.
A potential approach is to parametrize in terms of the inverse roots (poles) of Φ,

as advocated by Ehlers and Brooks (2006, 2008): By writing Φ(z) =
∏p
i=1(1−αiz), we

have that φ(p) ∈ Cp|αi | < 1 for all i . This looks attractive because it transforms Cp into
Dp = D× · · · ×D (p times) where D is the open unit disc, which is easy to sample from.25

But this method has serious drawbacks when we consider the RJ step. To decrease
dimension, the natural map would be to remove one of the roots from the polynomial.
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But because it is assumed that Φ has real coefficients (otherwise the model has no
realistic interpretation), any complex αi must appear as conjugate pairs. There is then
no obvious way to remove a root; a contrived method might be to remove the conjugate
pair and replace it with a real root with the same modulus, however it is unclear how
this new polynomial is related to the original, and to other aspects of the process, like5

ACV.

5.2.1 Reparametrisation of Φ and Θ

We therefore propose reparametrisation Φ (and Θ) using the bijection between Cp and
(−1,1)p advocated by various authors, e.g. Marriott et al. (1995) and Vermaak et al.
(2004). To our knowledge, these methods have not previously been deployed towards10

integrating out short memory components in Bayesian analysis of ARFIMA processes.
Monahan (1984) defined a mapping φ(p)←→ϕ

(p) recursively as follows:

φ(k−1)
i =

φ(k)
i −φ

(k)
k φ

(k)
k−i

1−
(
φ(k)
k

)2
, k = p, . . .,2, i = 1, . . .,k −1. (18)

Then set ϕ(p)
k =φ(k)

k for k = 1, . . .,p. The reverse recursion is given by:

φ(k)
i =

{
ϕ(p)
k for i = k k = 1, . . .,p

φ(k−1)
i +ϕ(p)

k φ
(k−1)
k−i for i = 1, . . .,k −1 k = 2, . . .,p

.15

Note that φ(p)
p =ϕ(p)

p . Moreover, if p = 1, the two parameterizations are the same,
i.e. φ1 =ϕ1 (consequently the brief study of ARFIMA(1,d ,0) in Sect. 5.1 fits in this
framework). The equivalent parametrized form for θ is ϑ. The full memory parameter
ω is parametrized as Ω̄ = (−1/2,1/2)×(the image of Cp,q). However recall that in prac-
tice, Cp,q will be assumed equivalent to Cp ×Cq, so the parameter space is effectively:20

Ω̄ = (−1/2,1/2)× (−1,1)p+q.
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Besides mathematical convenience, this bijection has a very useful property (cf. Kay
and Marple, 1981) which helps motivate its use in defining RJ maps. In other words,
if d = q = 0, using this parametrization for ϕ when moving between different values
of p allows one to automatically choose processes that have very closely matching
ACFs at low lags. In the MCMC context this is useful because it allows the chain to5

propose models that have a similar correlation structure to the current one. Although
this property is nice, it may be of limited value for full ARFIMA models, since the proof of
the main result does not easily lend itself to the inclusion of either a MA or long memory
component. Nevertheless, our empirical results similarly indicate a “near-match” for
a full ARFIMA(p,d ,q) model.10

5.2.2 Application of RJ MCMC to ARFIMA(p,d ,q) processes

We now use this reparametrisation to efficiently propose new parameter values. Firstly,
it is necessary to propose a new memory parameter $ whilst keeping the model fixed.
Attempts at updating each component individually suffer from the same problems of ex-
cessive posterior correlation that were encountered in Sect. 5.1. Therefore the simulta-15

neous update of the entire r = (p+q+1)-dimensional parameter$ is performed using
the hypercuboid-truncated Gaussian distribution from definition ξ$|$ ∼N

Hr
r ($,Σ$),

where Hr defines the r dimensional rectangle. The covariance matrix Σ$ is discussed
in some detail below. The choice of prior p$(·) is arbitrary. Pai and Ravishanker (1998)
used a uniform prior for ω which has an explicit expression in the $ parametrization20

(Monahan, 1984). However, their expression is unnecessarily complicated since a uni-
form prior over Ω holds no special interpretation. We therefore prefer uniform prior over
Ω̄: p$($) ∝ 1, $ ∈ Ω̄.

Now consider the “between-models” transition. We must first choose a model prior
pM(·). A variety of priors are possible; the simplest option would be to have a uni-25

form prior over M, but this would of course be improper. We may in practice want to
restrict the possible values of p,q to 0 ≤ p ≤ P and 0 ≤ q ≤Q for some P ,Q (say 5),
which would render the uniform prior proper. However even in this formulation, a lot of
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prior weight is being put onto complicated models which, in the interests of parsimony,
might be undesired. We prefer a truncated joint Poisson distribution with parameter λ:
pM(p,q) ∝ λp+q

p!q! I(p ≤ P ,q ≤Q).
Now, denote the probability of jumping from model Mp,q to model Mp′,q′ by

U(p,q),(p′,q′). U could allocate non-zero probability for every model pair, but for con-5

venience we severely restrict the possible jumps (whilst retaining irreducibility) using
a two-dimensional bounded birth and death process. Consider the subgraph of Z2:
G = {(p,q) : 0 ≤ p ≤ P , 0 ≤ q ≤Q}, and allocate uniform non-zero probability only to
neighboring values, i.e. if and only if |p−p′|+ |q−q′| = 1. Each point in the “body”
of G has four neighbors; each point on the “line boundaries” has three; and each of the10

four “corner points” has only two neighbors. Therefore the model transition probabilities
U(p,q),(p′,q′) are either 1/4, 1/3, 1/2, or 0.

Now suppose the current (p+q+3)-dimensional parameter is ψ (p,q), given by
ψ

(p,q) = (µ,σ,d ,ϕ(p),ϑ(q)), using a slight abuse of notation. Because the mathemat-
ical detail of the AR and MA components are almost identical, we consider only15

the case of de/increasing p by 1 here; all of the following remains valid if p is re-
placed by q, and ϕ replaced by ϑ. We therefore seek to propose a parameter
ξ

(p+1,q) = (ξµ,ξσ ,ξd ,ξ(p+1)
ϕ ,ξ(q)

ϑ
), that is somehow based on ψ (p,q). We further simplify

by regarding the other three parameters (µ, σ, and d ) as having the same interpre-
tation in every model, choosing ξµ = µ, ξσ = σ and ξd = d . For simplicity we also set20

ξ
(q)
ϑ

= ϑ(q). Now consider the map ϕ(p)→ ξ
(p+1)
ϕ . To specify a bijection we “dimension-

match” by adding in a random scalar u. The most obvious map is to specify u so

that its support is the interval (−1,1) and then set: ξ(p+1)
ϕ =

(
ϕ

(p),u
)

. The correspond-

ing map for decreasing the dimension is ϕ(p+1)→ ξ
(p)
ϕ is ξ(p)

ϕ =
(
ϕ(p+1)

1 , . . .,ϕ(p+1)
p

)
. In

other words, we either add, or remove the final parameter, whilst keeping all others fixed25

with the identity map, so the Jacobian is unity. The proposal q(u|ψ (p,q)) can be made
in many ways – we prefer the simple U(−1,1). With these choices the RJ acceptance
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ratio is

A = `(p′,q′)(x|ξ(p′,q′))− `(p,q)(x|ψ (p,q))+ log

{
pM(p′,q′)

pM(p,q)

U(p′,q′),(p,q)

U(p,q),(p′,q′)

}
,

which applies to both increasing and decreasing dimensional moves.
Construction of Σ$: much of the efficiency of the above scheme, including within-

and between-model moves, depends on the choice of Σ$ ≡ Σ
(p,q), the within-model5

move RW proposal covariance matrix. We first seek an appropriate Σ(1,1), as in
Sect. 5.1, with a pilot tuning scheme. That matrix is shown on the left below, where
we’ve “blocked it out”

Σ(1,1) =


σ2
d σd ,ϕ1

σd ,ϑ1

σ2
ϕ1

σϕ1,ϑ1

· · · · · · · · ·
σ2
ϑ1

 ,Σ(p,q) =


σ2
d Σd ,ϕ(p) Σd ,ϑ(q)

Σϕ(p),ϕ(p) Σϕ(p),ϑ(q)

· · · · · · · · ·
Σϑ(q),ϑ(q)

 , (19)

(where each block is a scalar) so that we can extend this idea to the (p,q) case in10

the obvious way – on the right above – where Σϕ(p),ϕ(p) is a p×p matrix, Σϑ(q),ϑ(q) is
a q×q matrix, etc. If either (or both) p,q = 0 then the relevant blocks are simply omitted.
To specify the various sub-matrices, we propose ϕ2, . . .,ϕp with equal variances, and
independently of d ,ϕ1,ϑ1, (and similarly for ϑ2, . . .,ϑq). In the context of Eq. (19) the
following hold:15

Σd ,ϕ(p) =
(
σd ,ϕ1

0
)

,Σd ,ϑ(q) =
(
σd ,ϑ1

0
)

, Σϕ(p),ϕ(p) =

 σ2
ϕ1

0
· · · · · ·
0 σ2

ϕIp−1

 ,

Σϑ(q),ϑ(q) =

 σ2
ϑ1

0
· · · · · ·
0 σ2

ϑ
Iq−1

 , Σϕ(p),ϑ(q) =

 σϕ1,ϑ1
0

· · · · · ·
0 O

 ,
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where the dotted lines indicate further blocking, 0 is a row-vector of zeros, and O is
a zero matrix. This choice of Σ$ is conceptually simple, computationally easy and
preserves the positive-definiteness as required (see Graves, 2013).

6 Empirical illustration and comparison

Here we provide empirical illustrations for the methods above: for classical and5

Bayesian analysis of long memory models, and extensions for short memory. To ensure
consistency throughout, the location and scale parameters will always be chosen as
µI = 0 and σI = 1. Furthermore, unless stated otherwise, the simulated series will be of
length n = 210 = 1024. This is a reasonable size for many applications; it is equivalent
to 85 years’ monthly observations. When using the approximate likelihood method we10

set P = n.

6.1 Long memory

Standard MCMC diagnostics were used throughout to ensure, and tune for, good mix-
ing. Because d is the parameter of primary interest, the initial values d [0] will be chosen
to systematically cover its parameter space, usually starting five chains at the regularly-15

spaced points {−0.4,−0.2,0,0.2,0.4}. Initial values for other parameters are not varied:
µ will start at the sample mean x̄; σ at the sample SD of the observed series x.

6.1.1 Efficacy of approximate likelihood method

Start with the “null case”, i.e. how does the algorithm perform when the data are not
from a long memory process? One hundred independent ARFIMA(0,0,0), or Gaussian20

white noise, processes are simulated, from which marginal posterior means, SDs, and
credibility interval endpoints are extracted. Table 1 shows averages over the runs.

The average estimate for each of the three parameters is less than a quarter of a SD
away from the truth. Credibility intervals are nearly symmetric about the estimate and
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the marginal posteriors are, to a good approximation, locally Gaussian (not shown).
Upon, applying a proxy “credible-interval-based hypothesis test” one would conclude
in ninety-eight of the cases that d = 0 could not be ruled out. A similar analysis for µ
and σ shows that hypotheses µ = 0 and σ = 1 would each have been accepted ninety-
six times. These results indicate that the 95 % credibility intervals are approximately5

correctly sized.
Next, consider the more interesting case of dI 6= 0. We repeat the above experiment

except that ten processes are generated with dI set to each of {−0.45,−0.35, . . .,0.45},
giving 100 series total. Figure 1 shows a graphical analog of results from this ex-

periment. The plot axes involve a Bayesian residual estimate of d , d̂R
(B)

, defined as10

d̂R
(B)

= d̂ (B) −dI , where d̂ (B) is the Bayesian estimate of d .
From the figure is clear that the estimator for d is performing well. Plot (a) shows

how “tight” the estimates of d are around the input value – recall that the parameter
space for d is the whole interval

(
−1

2 , 1
2

)
. Moreover, plot (b) indicates that there is no

significant change of posterior bias or variance as dI is varied.15

Next, the corresponding plots for the parameters σ and µ are shown in Fig. 2. We
see from plot (a) that the estimate of σ also appears to be unaffected by the input value
dI . The situation is different however in plot (b) for the location parameter µ. Although
the bias appears to be roughly zero for all dI , the posterior variance clearly is affected
by dI . To ascertain the precise functional dependence, consider plot (c) which shows,20

on a semi-log scale, the marginal posterior SD of µ, σ̂µ
(B), against dI .

It appears that the marginal posterior SD σ̂µ
(B) is a function of dI ; specifically:

σ̂µ
(B) ∝ AdI , for some A. The constant A could be estimated via least-squares regres-

sion. Instead however, inspired by asymptotic results in literature concerning classical
estimation of long memory processes (Beran, 1994a) we set A = n and plotted the best25

fitting such line (shown in plot c). Observe that, although not fitting exactly, the relation
σ̂µ

(B) ∝ ndI holds reasonably well for dI ∈
(
−1

2 , 1
2

)
. Indeed, Beran motivated long mem-

ory in this way, and derived asymptotic consistency results for optimum (likelihood-
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based) estimators and found indeed that the standard error for µ is proportional to
nd−1/2 (Theorem 8.2) but the standard errors of all other parameters are proportional
to n−1/2 (Theorem 5.1).

6.1.2 Effect of varying time series length

We now analyze the effect of changing the time series length. For this we conduct5

a similar experiment but fix dI = 0 and vary n. The posterior statistics of interest are the
posterior SDs σ̂d

(B), σ̂µ
(B) and σ̂σ

(B). For each n ∈ {128 = 27,28, . . .,214 = 16 384}, 10
independent ARFIMA(0,0,0) time series are generated. The resulting posterior SDs
are plotted against n (on log-log scale) in Fig. 3.

Observe that all three marginal posterior SDs are proportional to 1√
n
, although the10

posterior of µ is less ‘reliable’. Combining these observations with our earlier deduction
that σ(B)

µ ∝ n
dI , we conclude that for an ARFIMA0,dI ,0 process of length n, the marginal

posterior SDs follow those of Beran given previously.

6.1.3 Comparison with common estimators

In many practical applications, the long memory parameter is estimated using15

non/semi-parametric methods. These may be appropriate in many situations, where
the exact form of the underlying process is unknown. However when a specific model
form is known (or at least assumed) they tend to perform poorly compared with fully
parametric alternatives (Franzke et al., 2012). Our aim here is to demonstrate, via
a short Monte Carlo study involving ARFIMA(0,d ,0) data, that our Bayesian likelihood-20

based method significantly outperforms other common methods in that case. We con-
sider the following comparators: (i) rescaled adjusted range, or R/S (Hurst, 1951;
Graves, 2013) – we use the R implementation in the FGN (McLeod et al., 2007) pack-
age; (ii) Semi-parametric Geweke–Porter-Hudak (GPH) method (Geweke and Porter-
Hudak, 1983) – implemented in R package fracdiff (Fraley et al., 2012); (iii) de-25
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trended fluctuation analysis (DFA), originally devised by Peng et al. (1994) – in the R
package PowerSpectrum (Vyushin et al., 2009). (iv) wavelet-based semi-parametric
estimators (Abry et al., 2003) available in R package fARMA (Wuertz, 2012).

Each of these four methods will be applied to the same 100 time series with varying

dI as were used earlier experiments above. We extend the idea of a residual, d̂R
(R)

,5

d̂R
(G)

, d̂R
(D)

, and d̂R
(W )

, to accommodate the new comparators, respectively, and plot

them against d̂R
(B)

in Fig. 5.
Observe that all four methods have a much larger variance than our Bayesian

method, and moreover the R/S is positively biased. Actually, the bias in some cases
would seem to depend on dI : R/S is significantly (i.e. > 0.25) biased for dI < −0.3 but10

slightly negatively biased for d > 0.3 (not shown); DFA is only unbiased for dI > 0; both
the GPH and wavelet methods are unbiased for all d ∈

(
−1

2 , 1
2

)
.

6.2 Extensions for short memory

Known form: we first consider the MCMC algorithm from Sect. 5.1 for sampling under
an ARFIMA(1,d ,0) model where the full memory parameter is ω = (d ,φ1). Recall that15

that method involved proposals from a hypercuboid MVN using a pilot-tuned covariance
matrix. Also recall that it is a special case of the re-parametrized method from Sect. 5.2.

In general, this method works very well; two example outputs are presented in Fig. 6,
under two similar data generating mechanisms.

Plot (a) shows relatively mild correlation (ρ = 0.21) compared with (b) which shows20

strong correlation (ρ = 0.91). This differential behavior can be explained heuristically
by considering the differing data-generating values. For the process in plot (a) the
short memory and long memory components exhibit their effects at opposite ends of
the spectrum; see Fig. 7a. The resulting ARFIMA spectrum, with peaks at either end,
makes it easy to distinguish between short and long memory effects, and consequently25

the posteriors of d and φ are largely uncorrelated. In contrast, the parameters of the
process in plot (b) express their behavior at the same end of the spectrum. With neg-
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ative d these effects partially cancel each other out, except very near the origin where
the negative memory effect dominates; see Fig. 7b. Distinguishing between the effects
of φ and d is much more difficult in this case, consequently the posteriors are much
more dependent.

In cases where there is significant correlation between d and φ, it arguably makes5

little sense to consider only the marginal posterior distribution of d . For example the
95 % credibility interval for d from plots (b) is (−0.473,−0.247), and the corresponding
interval for φ is (−0.910,−0.753), yet these clearly give a rather pessimistic view of
our joint knowledge about d and φ – see Fig. 7c. In theory an ellipsoidal credibility set
could be constructed, although this is clearly less practical when dimω > 2.10

Unknown form: the RJ scheme outlined in Sect. 5.2 works well for data simulated
with p and q up to 3. The marginal posteriors for d are generally roughly centered
around dI (the data generating value) and the modal posterior model probability is
usually the “correct” one. To illustrate, consider again the two example data generating
contexts used above.15

For both series, kernel density for the marginal posterior for d are plotted in Fig. 8a
and b, together with the equivalent density estimated assuming unknown model orders.

Notice how the densities obtained via the RJ method are very close to those ob-
tained assuming p = 1 and q = 0. The former are slightly more heavy-tailed, reflecting
a greater level of uncertainty about d . Interestingly, the corresponding plots for the20

posteriors of µ and σ do not appear to exhibit this effect (see Fig. 8c and d). The poste-
rior model probabilities are presented in Table 2, showing that the “correct” modes are
being picked up consistently.

As a test of the robustness of the method, consider a complicated short memory
input combined with a heavy tailed α-stable innovations distribution. Specifically, the25

time series that will be used is the following ARFIMA(2,d ,1) process(
1− 9

16
B2
)

(1−B)0.25Xt =
(

1+
1
3
B
)
εt, where εt ∼ Sα=1.75,0. (20)

599

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/573/2015/npgd-2-573-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/573/2015/npgd-2-573-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
2, 573–618, 2015

Bayesian Inference

T. Graves et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

For more details, see Graves (2013, Sect. 7.1). The marginal posterior densities of d
and α are presented in Fig. 9.

Performance looks good despite the complicated structure. The posterior estimate
for d is d̂ (B) = 0.22, with 95 % CI (0.04,0.41). Although this interval is admittedly rather
wide, it is reasonably clear that long memory is present in the signal. The corresponding5

interval for α is (1.71,1.88) with estimate α̂(B) = 1.79. Finally, we see from Table 3 that
the algorithm is very rarely in the “wrong” model.

The Nile Data: we conclude with an application of our methods to the famous annual
Nile minima data. Because of the fundamental importance of the river to the civiliza-
tions it has supported, local rulers kept measurements of the annual maximal and10

minimal heights obtained by the river at certain points (called gauges). The longest
uninterrupted sequence of recordings is from the Roda gauge (near Cairo), between
622 and 1284 AD (n = 663).4 The posterior summary statistics and marginal densities
of d and µ for the Nile data are presented in Fig. 10. Posterior model probabilities are
presented in Table 4. We see that the model with the highest posterior probability is15

the ARFIMA(0,d ,0) model with d ≈ 0.4. This suggests a strong, “pure”, long memory
feature. Our results compare favorably with other studies (Liseo et al., 2001; Hsu and
Breidt, 2003; Ko and Vannucci, 2006a).

7 Conclusions

We have provided a systematic treatment of efficient Bayesian inference for ARFIMA20

models, the most popular parametric model combining long and short memory effects.
Through a mixture of theoretical and empirical work we have demonstrated that the
methods can handle the sorts of time series data that are typically confronted with
possible long memory in mind.

4There is evidence (e.g. Ko and Vannucci, 2006b) that the sequence is not actually homo-
geneous.
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Many of the choices made throughout, but in particular those leading to our likelihood
approximation stem from a need to accommodate further extension. For example, in fu-
ture work we intend to extend them to cope with a heavy-tailed innovations distribution.
For more evidence of potential in this context, see Graves (2013, Sect. 7). Along similar
lines, there is scope for further generalization to incorporate seasonal (long memory)5

effects. Finally, an advantage of the Bayesian approach is that it provides a natural
mechanism for dealing with missing data, via data augmentation. This is particularly
relevant for long historical time series which may, for a myriad of reasons, have record-
ing gaps. For example, some of the data recorded at other gauges along the river Nile
have missing observations although otherwise span a similarly long time frame. For10

a demonstration of how this might fit within our framework, see Sect. 5.6 of Graves
dissertation.
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Table 1. Posterior summary statistics for ARFIMA(0,0,0) process. Average of 100 runs.

mean std 95 % CI

d 0.006 0.025 −0.042 0.055
µ −0.004 0.035 −0.073 0.063
σ 1.002 0.022 0.956 1.041
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Table 2. Posterior model probabilities for time series from Figs. 6a and b and 8a and b.

(a) p\q 0 1 2 3 4 5 marginal

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.805 0.101 0.003 0.000 0.000 0.000 0.908
2 0.038 0.043 0.001 0.000 0.000 0.000 0.082
3 0.005 0.004 0.000 0.000 0.000 0.000 0.009
4 0.000 0.001 0.000 0.000 0.000 0.000 0.001
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000

marginal 0.848 0.148 0.004 0.000 0.000 0.000

(b) p\q 0 1 2 3 4 5 marginal

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.829 0.125 0.002 0.000 0.000 0.000 0.956
2 0.031 0.013 0.000 0.000 0.000 0.000 0.044
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000

marginal 0.860 0.138 0.002 0.000 0.000 0.000
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Table 3. Posterior model probabilities.

p\q 0 1 2 3 4 5 marginal

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.822 0.098 0.001 0.000 0.000 0.921
3 0.014 0.056 0.004 0.000 0.000 0.000 0.075
4 0.003 0.001 0.000 0.000 0.000 0.000 0.004
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000

marginal 0.017 0.880 0.102 0.002 0.000 0.000
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Table 4. Posterior model probabilities for Nile minima.

p\q 0 1 2 3 4 5 marginal

0 0.638 0.101 0.010 0.000 0.000 0.000 0.750
1 0.097 0.124 0.011 0.000 0.000 0.000 0.232
2 0.007 0.010 0.000 0.000 0.000 0.000 0.018
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000

marginal 0.742 0.236 0.022 0.000 0.000 0.000
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Figure 4. Table: Mean difference of estimates d̂(B) under alternative prior assumption. Plots: Comparison of
posteriors (solid lines) obtained under different priors (dotted lines). Time series used: ARFIMA(0,0.25,0); (a)
n= 27 = 128, (b) n= 210 = 1024.
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Figure 4. Table: Mean difference of estimates d̂ (B) under alternative prior assumption. Plots:
Comparison of posteriors (solid lines) obtained under different priors (dotted lines). Time series
used: ARFIMA(0,0.25,0); (a) n = 27 = 128, (b) n = 210 = 1024.
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Figure 5. Comparison of Bayesian estimator with common classical estimators; (a) R/S, (b) GPH, (c) DFA,
(d) Wavelet.
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Figure 5. Comparison of Bayesian estimator with common classical estimators; (a) R/S,
(b) GPH, (c) DFA, (d) wavelet.
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Figure 6. Posterior samples of (d,φ); input time series (a) (1+0.92B)(1−B)0.25Xt = εt, (b) (1−0.83B)(1−
B)−0.35Xt = εt.
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Figure 7. Spectra for processes in figure 6. Green line is relevant ARMA(1,0) process, red line is relevant
ARFIMA(0,d,0) process, black line is ARFIMA(1,d,0) process; (a) (1+0.92B)(1−B)0.25Xt = εt; (b) (1−
0.83B)(1−B)−0.35Xt = εt. Pane (c) shows posterior samples of (d,φ) from series considered in pane (b)
with credibility sets: red is 95% credibility set for (d,φ), green is 95% credibility interval for d, blue is 95%
credibility interval for φ.
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Figure 6. Posterior samples of (d ,φ); input time series (a) (1+0.92B)(1−B)0.25Xt = εt,
(b) (1−0.83B)(1−B)−0.35Xt = εt.
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Figure 7. Spectra for processes in figure 6. Green line is relevant ARMA(1,0) process, red line is relevant
ARFIMA(0,d,0) process, black line is ARFIMA(1,d,0) process; (a) (1+0.92B)(1−B)0.25Xt = εt; (b) (1−
0.83B)(1−B)−0.35Xt = εt. Pane (c) shows posterior samples of (d,φ) from series considered in pane (b)
with credibility sets: red is 95% credibility set for (d,φ), green is 95% credibility interval for d, blue is 95%
credibility interval for φ.
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Figure 7. Spectra for processes in Fig. 6. Green line is relevant ARMA(1,0) process, red line
is relevant ARFIMA(0,d ,0) process, black line is ARFIMA(1,d ,0) process; (a) (1+0.92B)(1−
B)0.25Xt = εt; (b) (1−0.83B)(1−B)−0.35Xt = εt. (c) shows posterior samples of (d ,φ) from se-
ries considered in (b) with credibility sets: red is 95 % credibility set for (d ,φ), green is 95 %
credibility interval for d , blue is 95 % credibility interval for φ.
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Figure 8. Marginal posterior density of d from series in figure 6, (a)–(b) respectively. Solid line is density
obtained using reversible-jump algorithm. Dotted line is density obtained using fixed p= 1 and q = 0. Panels
(c)–(d) shows the posterior densities for µ and σ, respectively, corresponding to the series in 6(a); those for 6(b)
look similar.
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Figure 9. Marginal posterior densities (a) d, (b) α.
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Figure 8. Marginal posterior density of d from series in Fig. 6, (a, b) respectively. Solid line is
density obtained using reversible-jump algorithm. Dotted line is density obtained using fixed p =
1 and q = 0. (c) and (d) show the posterior densities for µ and σ, respectively, corresponding
to the series in Fig. 6a; those for Fig. 6b look similar.
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Figure 8. Marginal posterior density of d from series in figure 6, (a)–(b) respectively. Solid line is density
obtained using reversible-jump algorithm. Dotted line is density obtained using fixed p= 1 and q = 0. Panels
(c)–(d) shows the posterior densities for µ and σ, respectively, corresponding to the series in 6(a); those for 6(b)
look similar.
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Figure 9. Marginal posterior densities (a) d , (b) α.
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mean 95% CI
d 0.039 0.336 0.482
µ 62 1037 1284
σ 1.91 66.46 73.97
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Figure 10. Table: Summary posterior statistics for Nile minima. Plots: Marginal posterior densities for Nile
minima; (a) d, (b) µ.
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Figure 10. Table: summary posterior statistics for Nile minima. Plots: marginal posterior densi-
ties for Nile minima; (a) d , (b) µ.
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